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ABSTRACT

This research project has developed methods for computational fluid
dynamics and fluid-flow control. The research on computational fluid
dynamics has consisted of the analysis and development of simulations
and mathematical models of two-dimensional fluid motion. The control
research has used a hierarchy of simulations and models to design
feedback controllers for fluid flows. Both adaptive and nonadaptive
controllers were developed. The research was motivated by the need to

stabilize high-Reynolds number flows around bodies such as delta-wing
aircraft.
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1 Introduction

Objectives and Approach. The basic objective of the research project was the inte-
grated development of methods for feedback control of fluid flows and methods for efficient
numerical simulation of flow properties that are most important for controller design and
verification. In control design, the objective is a strategy for adaptive feedback control of
the highly nonlinear vortex dynamics characteristic of flow past bluff bodies. In computa-
tional fluid dynamics, the objective is specialized vortex methods for long-time simulation
of actively controlled flows.

The project has developed coordinated methods for computational fluid dynamics (CFD)
and flow control. The CFD research has consisted of the analysis and development of com-
putational simulations and mathematical models for solving problems of two-dimensional
fluid motion. The control research has used the hierarchy of simulations and models to
design controllers for fluid flows. The research was motivated by the need to stabilize
high-Reynolds number flows around bodies such as delta-wing aircraft.

A hierarchy of models were constructed to facilitate the control design for the problem
of stabilizing vortices behind a flat plate. The models used were a point-vortex simula-
tion, a vortex blob simulation, and a finite difference simulation of the full Navier-Stokes
equations. The point-vortex model [1] facilitated the use of mathematical analysis and
analytic control design, the point-vortex and vortex blob simulations were of sufficient com-
putational efficiency that adaptive identification and adaptive control procedures could be
developed [2, 3, 4], and the finite difference simulation was created for the validation of our
identification and control procedures.




Main Results. The most important results of the project deal with control of flows with
large vortical structures. These main results are:

o Effective adaptive regulation of the oscillations in measured cross-stream velocity in
a wake typical of flow past bluff bodies [2, 4] 1;

e Adaptive identification of input/output models that reveal the effect of relative actu-
ator/sensor locations on the zero dynamics of the nonlinear input/output map of the
flow field [3, 4];

e Use of a reduced-order vortex model to design a nonlinear controller that stabilizes
the large vortical structures in flow past a plate, as simulated by a very high-order
CFD model [1];

e Design of an effective fixed-gain linear controller that uses a realistic point velocity
measurement and stabilizes the large vortical structures in flow past a plate [3, 4];

An important distinguishing feature of this is the fact that most of the controllers are
based on digital input/output models, which usually are identified from input/output data.
This means that the control methods should be applicable to more complicated flows with
qualitative features similar to those of the simulation models. Also, the input/output models
used assume realistic sensor measurements, such as point velocity measurements near the
surface of a body. Because adaptive control based on an identified input/output model
has proved successful in stabilizing the oscillating cross-stream velocity in the vortical flow
generated by the vortex-blob model used in [2, 3, 4], we plan to continue to develop adaptive
control methods for various classes of vortical flows. However, in our recent work on flow
control, we have not used adaptive control exclusively; we have also used non-adaptive linear
and nonlinear control.

The relevance of adaptively identified linear input/output models for control of highly
nonlinear fluid flows is demonstrated in 2, 3]; however, preliminary simulation results during
the current project indicate that, for some important flows, a nonlinear input/output model
should serve better as the basis for controller design. Future research is planned to pursue
the use of nonlinear time series in control of fluid flows. Both adaptive and nonadaptive
controllers should be studied. The reduced-order vortex models should provide insight
about which nonlinear terms to include in time-series models.

1The papers [1], [2], [3] are included in the Appendix of this report.
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2 Modeling and Identification for Control
2.1 Linear Input/Output Models

The adaptive (and quasi adaptive) controllers used for flow control have been based on
either linear or nonlinear digital input-output models. The linear input-output models,
often referred to as ARX (Auto-Regressive with eXogenous inputs) models have the form

o6 = 3 A0t — ) + Y B(Out —) 2.1)
i=1 i=1

where y(t) is the vector of measured outputs and u(t) is the vector of control inputs. The
matrices A;(t) and B;(t) are time-varying coefficients to be identified adaptively from in-
put/output data. Although the high-Reynolds flows that we have controlled are highly non-
linear, our recent research has demonstrated that linear ARX models can serve as the basis
for adaptive controllers for such flow because the adaptive identification scheme achieves a
local linearization of the true nonlinear input/output map of the flow field.

The results in [2, 4] demonstrated the ability of an adaptive controller based on a linear
ARX model to reduce the amplitude of oscillation in a wake typical of those generated by
flow past bluff bodies. A study in [3, 4] of the zero dynamics of the nonlinear vortex-blob
model of the flow field and of the zero dynamics of the adaptively identified linear ARX
model shows that the ARX model captures an important effect of actuator and sensor
locations on the stability of the zero dynamics. The adaptively identified model had all
stable zeros when the actuator was downstream of the sensors, while this model had some
unstable zeros whenever the actuator was upstream of the sensors; i.e., the identified linear
model was minimum phase if and only if the sensors were upstream of the actuator. It is
well known that whether a plant is minimum phase is an important issue in determining
whether feedback controllers can produce closed-loop stability and robustness. In partic-
ular, a controller that somehow inverts the plant produces an unstable closed-loop system
when the plant is nonminimum phase. That the identified unstable zeros of the linear
input/output model represented actual and important characteristics of the flow field was
verified as discussed in [3, 4] by simulation of a nonlinear feedback control based on the true,
explicit vortex-blob model; in this simulation, as predicted by the identified ARX model,
the closed loop-system was either stable or unstable depending on whether the actuator was
downstream or upstream of the sensors.

That sensors located upstream of actuators produce a minimum-phase plant for the par-
ticular flow-control problem in [3] suggests that, as should be expected in light of experience
with flexible structures and other classes of control systems, stability of zero dynamics in
many flow-control problems depends on the relationship between actuator and sensor loca-
tions. However, the form of this dependence will vary for different flows, bluff bodies, and
actuators and sensors. This will be a major issue in future research, especially when we
employ multiple actuators and sensors and controllers based on nonlinear time series. Any
results that can guide actuator/sensor placement to produce minimum-phase plants will be
useful for any approaches to flow control, not just the control designs that we use.




2.2 Nonlinear Input/Output Models

Although we have been successful in basing adaptive feedback controllers for certain nonlin-
ear fluid flows on linear input/output models with adaptively varying coefficients, we have
preliminary simulation results indicating that nonlinear input/output models (i.e. nonlinear
time series) can be more accurate prediction models for adaptive control of fluid models.
The nonlinear time series models that we have considered have the form

y(t) =3 Ayt — )+ Bi(tyult — i)
=1 1=1

+ i i Aii(0) fi(y(t —1)) + i Z Bij(t)g;(u(t — 1)) (2.2)
i=1j=1 i=1j=1

where y is a measured output vector and u is a control vector. The functions f; and
gj can be anything from multivariable polynomials to radial basis functions to splines or
perhaps wavelets. Recently, there has been considerable research on using nonlinear time
series to model the input/output characteristics of highly nonlinear, often chaotic systems,
particularly, fluid dynamics [5, 6, 7, 8], [9, 10, 11]. We believe that the reduced-order point-
vortex model that Cortelezzi has used recently for design of nonlinear controllers can be
used to determine good candidates for the functions f; and g; in the nonlinear time series
on which adaptive flow controllers are based.

We identify the coefficient matrices A4;(t), B;(t), Ai;(t), and B;j(t), whereas the approach
taken by previous researchers on nonlinear time series has been to generate long sequences
of input/output data from a nonlinear plant and then use off-line least-squares parameter
identification to determine constant coefficient matrices A;; and B;; for a model of the
form (2.2). This approach is based on the questionable assumption that a single nonlinear
model can approximate the input/output map for a nonlinear system in all regions of state
space. Our approach allows the time series used to approximate the input/output map to
vary adaptively as the state of the nonlinear system moves in state space. We have had
considerable success with this approach in control of simulations of fluid flows and related
nonlinear systems [12, 13, 2, 14], even though we have restricted the time series used so far
for control design to be linear. Some of our preliminary simulations comparing adaptively
varying linear and nonlinear time series for output prediction suggest that at least modest
improvement can be achieved by including polynomial nonlinearities in the time series. We
have carried out such comparisons on vortex simulations and on the Lorentz equations.

2.3 Phase Space Analysis of Vortex-blob and Point-vortex Models

While the input/output models have been prominent in the control design and analysis,
we also have used the point-vortex model in design of nonlinear controllers. This nonlinear
state-space model is a reduced-order approximation to the high-order vortex-blob model.
Because the point-vortex model is based explicitly on the physics of vortical flow, it al-
lows important physical information to be incorporated into controller design, whereas the
input/output models sometimes miss relevant physics.

The application of a controller derived for a low-dimensional (reduced) model to a model
of higher or of infinite dimension is not trivial. Besides trial-and-error, a better and more
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scientific approach is to prove or to verify that the two systems are dynamically equivalent;
i.e., that the phase spaces of the low-dimensional system and the high-dimensional system
are topologically equivalent. If the two systems are dynamically equivalent, then the con-
troller designed for the reduced model should be able to control the higher-order model.
If, instead, the two systems are not dynamically equivalent, then analyzing the differences
between the structures of their respective phase spaces should provide the information nec-
essary to modify the controller for the reduced model to enable it to control the high-order
system.

In our research, the controller derived for the reduced point-vortex model predicts the
suction necessary to confine the wake when the position and strength of the vortex pair
is known. To apply this controller to the vortex blob simulation, we need, first of all, to
define a quantity that we call the center of circulation, which represents the ensemble of
vortex blobs. The position of the center of circulation can be fed back to several classes of
controllers.

The center of circulation must conserve the total circulation to satisfy Kelvin’s theorem
and at least the first moment, the linear impulse, of the ensemble. We define the total
circulation as

N
Tec=) Ty (2.3)
i=1
and the linear impulse of the ensemble as
1 l u 1
Icz(gc—f->=21i=2n (@—e), (2.4)
Ce - - Gi

where (; is the position in the mapped plane of the blob of strength I';. The above equation
permits us to derive the position of the center of circulation of an ensemble of vortices in
the presence of a body of finite size. We have:

Ic \/chc + 4a2I% ++/Iclc

Cc = i [ g ] . (2.5)

Hence, the center of circulation can be envisioned as a point vortex of circulation I'c po-
sitioned at (.. Note in the case of continuously distributed vorticity is possible to derive a
equivalent integral definition of the center of circulation.

The proof of the dynamic equivalence of the point-vortex and the vortex-blob models
can be given deriving the equation of motion for the center of circulation, and showing that
the phase space associated with the dynamics of the center of circulation is topologically
equivalent to the phase space associated with the dynamics of the point vortex. Although
non trivial, the derivation of the equation of motion for the center of circulation is, in
principle, possible. Since the position and the strength of the center of circulation are
defined in terms of positions and circulations of the all the vortex blobs in the ensemble,
it should be possible to derive the equation of motion for the center of circulation from
the equations of motion of the vortex blobs. When the equation of motion for the center
circulation is available it can be analyzed as a dynamical system computing fixed points,
limit cycles, etc. and studying their structure and their stability. The final step of this
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process is the construction of the phase space associated with the dynamics of the center
of circulation and the comparison with the phase space associated with the dynamics of
the point vortex. If the phase spaces of the two systems present the same types of fixed
points, limit cycles, etc. in the region of the phase space of interest in the application under
consideration then the controller derived for the reduced model should, in principle, be able
to govern the dynamics of the higher order system.

A less formal approach, the one taken up to now in our current research, is the numerical
verification of the equivalence of the phase spaces. In this case the controller derived for
the reduced model is applied to the higher order model and has to be able to govern some
of the dynamics of higher order model. To verify the equivalence of the phase spaces one
should run a series of numerical experiments to confirm that the controller is able to drive
the system, for example, near to a stable fixed point of the reduced model. The numerical
experiments are, of course, suggested by the knowledge of the phase space of the reduced
model. A methodical reconstruction of the phase plane of the higher order model would
provide crucial information about performance and limitation of the controller and possible
suggestions in the case the controller has to be redesigned.




3 Active Control of Flow Past a Plate

3.1 Background

In recent years, efforts to modify certain features of the wake behind bluff and slender
bodies have been successful. The objectives of such efforts have been reduction or magni-
fication of the wake thickness [15], wake stabilization [16], vortex cancellation [17], pattern
reproduction [18], [19], [20], and lift enhancement [21], [22]. In all these investigations, the
free-stream velocity was kept constant, and quasi-steady results were achieved usually by
moving the body or the actuator with a frequency scaled by the shedding frequency. In a
more general situation, in which the free-stream velocity is time dependent, this approach
is generally not sufficient to control the flow.

The problem of actively controlling an unsteady fluid flow is in general nonlinear. Con-
trol of nonlinear systems is still a subject of much research, and there is no reliable method
to obtain a controller for a highly nonlinear infinite-dimensional system like a fluid flow
with vortical structures. It is well known that the model chosen to represent the plant
is of crucial importance in the derivation of the controller. A very complex and detailed
model, the full Navier-Stokes equations, for example, might generate an overly complex
controller or might make the derivation of the controller impossible. On the other hand, an
over-simplified or linear model facilitates the derivation of a controller but might generate a
controller unable to achieve the desired control objective. A reasonable compromise is a re-
duced model able to capture the dynamic features of the flow that one wants to control. See
[23] [24] [25]. Typically, the reduced model is a low-dimensional system governed by a set of
ordinary differential equations, while the real flow has infinite dimension. An advantage of
working with a reduced model is that one can use dynamical system analysis to investigate
the problem. Analysis of the phase space of the reduced system should provide information
about fixed points, limit cycles, bifurcation points, etc., and consequently should provide
information about effectiveness and robustness of a controller. Another advantage of model
reduction is the potential for producing fast numerical algorithms, which are essential for
controlling a real flow.

Before attempting to control a laboratory flow, one should take the intermediate step of
controlling the same class of flows simulated by a more sophisticated CFD (Computational
Fluid Dynamics) code. The application of the controller derived for the reduced model to
a complex model should be successful if the two models are dynamically equivalent; i.e., if
the phase spaces of the two models are topologically equivalent. The equivalence of the two
models can be investigated via dynamical system and time series analysis. There are many
advantages in controlling a flow simulated by another CFD code. All the flow quantities
necessary to feedback to the controller can be easily measured. The action of the controller
is automatically synchronized with the evolution of the flow because both algorithms run
in virtual time. Furthermore, the controller can be tested on gradually more complex flows.
For example, a controller derived first for an inviscid vortex-blob model can be applied to a
slightly viscous finite-difference model of the same flow and, if necessary, the controller can
be modified to handle the more realistic model. Finally, the control of a laboratory flow can
be attempted when the controller generated by this chain of refinements is robust enough
to perform in the presence of the unmodeled and unpredictable uncertainties affecting the
real system and is fast enough to control the flow in real time. Such an interative design
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procedure is required to produce a controller able to handle the flow governed by the Navier-
Stokes equations.

3.2 Control of the Wake behind a Flat Plate

Active control of flow past a thin, flat plate perpendicular to the free-stream velocity in
an unsteady flow is the focus of our most recent research. (See Figure 1.) Although
simplified, this problem contains most of the difficulties associated with control of the
unsteady separated flows past bluff bodies. Manipulating and stabilizing the wake past
a plate is closely related to important aeronautical applications: lift enhancement, drag
reduction, fluid-structure interaction, vortex management. We also choose this geometry
because the flow creates a wake dominated by large coherent vortical structures in a large
regime and because it permits us to study the problem theoretically using a reduced model,
as well as numerically with several types of CFD models.

In the simplest model, we represent the unsteady separation from the tips of a flat plate
by means of a pair of point vortices whose time-dependent circulation is predicted by an
unsteady Kutta condition. The motion of the vortex pair is determined by a non-linear
ordinary differential equation first proposed by Brown and Michael [26]. A suitable vortex
shedding mechanism is also introduced to allow the simulation of flows involving multiple
vortices. This reduced model captures the main features of the flow and, for example, is
quite accurate for power-law starting flows. See Section 2 of [1] 2 for a detailed discussion.

e |,
— I SO

Figure 1: Unsteady separated flow past a plate. Vortex sheets are shown. Free-stream
velocity = U(t), Suction = S(t).

The control actuator is a suction point placed on the downstream wall of the plate.
As indicated in Figure 1, the strength of the time-dependent suction is S(¢). The control
objective is to confine the wake to a single vortex pair of constant circulation. We show that
suction, as mean of control, is very effective in this type of problem. For any time-dependent

2The papers [1], [2], and [3] are included in the Appendix of this report.
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free-stream velocity in the point-vortex model, the Kutta condition determines the suction
necessary to inhibit the production of additional circulation when a vortex pair is present
in the flow. Thus the closed-form feedback control law can be determined analytically from
the Kutta condition. (See Section 3 of [1] in the Appendix of this report.)

We perform a dynamical system type of analysis to characterize the performance of the
controller. When the free-stream is constant, we show the existence of fixed points for the
unperturbed system and compute the locus of the fixed points. There is a critical value
for the circulation associated with the vortex pair above which one can find two pairs of
fixed points: a pair of stable nodes and a pair of saddle points farther downstream. The
circulation plays the role of a bifurcation parameter and the vector field undergoes to a
saddle-node bifurcation when the circulation is near its critical value. The analysis of the
phase space shows the existence of a controllable region between the plate and the stable
manifolds of the saddle points. When the free-stream velocity oscillates periodically about
a unit mean, we compute the Poincaré section to characterized the perturbed system. We
show the topological equivalence between the Poincaré section and the phase space of the
unperturbed system. The stable node of the Poincaré section represents a limit cycle while
the saddle point represents an unsteady periodic orbit. See Section 4 of [1] in the Appendix
for a detailed discussion.

3.3 High-Order Simulation

The second step of our research on controlling the flow past a plate is to apply the controller
derived for the (low-order) point-vortex model to the high-order vortex-blob model and
compare the performance of the same controller applied to the two different models. We
use a vortex-blob model as an intermediate step before attempting the control of the flow
simulated by the Navier-Stokes equations because complexity of the flow simulated by the
vortex blob model, although three orders of magnitude higher than the reduced model, is
still finite. To complete the final step of controlling the Navier-Stokes equations for this
problem, we currently are in the process of developing the finite-difference simulation.

In the vortex-blob model, the unsteady separation from the tips of a plate is simulated
by introducing at each time step a new vortex blob in the flow to satisfy the Kutta condition.
The motion of the vortex blobs is determined by a set of nonlinear differential equations.
The number of equations to be solved increases in time as new vortex blobs are introduced
in the flow. For the simulations discussed here, the point-vortex model has two states; the
vortex-blob model has a variable number of states that grows to more than 2000.

The controller derived for the reduced model predicts the suction necessary to confine
the wake when the position an strength of the point vortex is known. To apply this controller
to the vortex blob simulation we define a quantity, the center of circulation, to represent the
ensemble of vortex blobs. The center of circulation can be envisioned as a point vortex which
conserves circulation and linear impulse of the ensemble. The position and the circulation
of the center of circulation is fed back to the controller closing the feedback loop.

We have applied the controller derived for the reduced model to the vortex blob model
using the concept of center of circulation. To support this step, we verified numerically
the dynamical equivalence of the two models; i.e., the topological equivalence of the phase
spaces of the two models. Using a family of free-stream conditions we produced vortical




structures of different circulation and verified that the center of circulation is driven very
near the fixed point of the reduced model. We also verified that nearly the same critical
value of circulation exists for the vortex-blob model.

We compare the performance of the controller based on the Kutta condition when ap-
plied to the reduced (point-vortex) model and to the vortex-blob model. In both simulations
the same free-stream velocity is used. It increases from rest, reaches a maximum value, and
decreases to a final constant value at ¢ = 1, as shown in Figure 2. During the deceler-
ation, the rate of circulation production changes sign triggering the controller, as shown
in Figure 5. Figure 3 shows the comparison between the trajectory of the point vortex
and the trajectory of the center of circulation. These trajectories are nearly the same and
both, point vortex and center of circulation, are driven to nearly the same fixed point. The
comparison between the total circulation of the top point vortex and of the top center of
circulation is also satisfactory. The controller works, of course, perfectly with the point-
vortex model, but the controller also drives circulation of the vortex blob simulation closed
to the predicted value (Figure 4). It is interesting to compare the control signal, (i.e., the
suction) as function of time. Figure 5 shows that the suction is nearly the same for the two
simulations during the first quarter of the time interval, then the suction for the vortex-blob
model deviates about 20%, but finally recovers.

Figure 2: Free-stream velocity U(t).
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Figure 3: The trajectory of the point vortex in the reduced model and the trajectory of the
center of circulation in the vortex-blob model.
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Figure 5: Control suction S(t): comparison between point-vortex model and vortex-blob
model.

Figure 6 presents a comparison between the stream function of the two simulations at
different times during the capture of the vortex pair. The two simulations differ in the
symmetry condition: no symmetry condition was imposed on the vortex-blob simulation
while the point-vortex simulation is constrained to be symmetric. However, the flow field
generated by the vortex-blob simulation is almost exactly symmetric, so only the top half of
the domain is shown. Figure 6(a)—(d) show the flow at time ¢ < t5, where two recirculating
bubbles grow and merge together. As suction becomes non-zero, the recirculating bubble
splits into two bubbles, as shown in Figure 6(e) and (f). Figure 6(e)—(1) show how the
vortex and the center of circulation are driven to the respective fixed points. Figure 6(i)—(1)
are nearly identical because the flow has almost reached the steady state.

We emphasize that the point-vortex simulation involves only 2 vortices while the vortex-
blob simulation involves about 1000 blobs. The simulations are remarkably similar; only
the size of the vortex core, in black, is clearly different. In the vortex-blob simulation the
vortex core occupies a large part of the recirculation region due to the distribution of blobs
in the region, while in the point-vortex simulation the stream function has a sharp peak at
the location of the point vortex.

We emphasize also that the same controller was applied to both the point-vortex sim-
ulation and the vortex-blob simulation. In view of the large differences between the two
numerical models, we believe that the remarkable agreement between the two simulations
suggests strongly that the same controller should be successful on an even more realistic
finite-difference simulation and, ultimately, on an experimental flow.

It is important to note that we have quite recent results for a different controller for
this same problem. This latest controller uses proportional and integral (PI) feedback of
the position of the center of circulation, but it does not use the Kutta condition or any
other internal information about the flow. This controller gives results on the vortex-
blob simulation almost identical to those produced by the controller based on the Kutta
condition. The success of this PI controller leads us to believe that we will be successful in
applying other control designs based on input/output models to this class of flows.
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Abstract

Active circulation control of the two-dimensional unsteady separated flow past a plate with
a suction point on the downstream wall is considered. The rolling-up of the separated shear-
layer is modelled by a pair of point vortices whose time-dependent circulation is predicted by
an unsteady Kutta condition. A nonlinear controller able to confine the wake to a single vortex
pair of constant circulation is derived in closed-form for any free-stream condition. Dyrzmical
system analysis is used to explore the performance of the controlled system. Finally, the control

strategy is applied to three different classes of unsteady flows and the results are discussed.
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1 Introduction

Active control of unsteady separated fluid flows is attracting wide interest in both the fluid mechanics
and control communities because of the many potential engineering applications. See Gad-el-Hak
& Bushnell (1991) for a discussion and references. Drag reduction, lift enhancement, noise and
vibration control, mixing improvement, etc. are some of the many problems where active control of
flows past bluff bodies finds natural applications.

The problem of actively controlling an unsteady fluid flow is in general nonlinear. Since the
control of nonlinear systems is still a subject of research, there is no general framework to obtain
a desired controller. However, it is well known that the model chosen to represent the plant is of
crucial importance in the derivation of the controller. A very complex and detailed model, the full
Navier-Stokes equations for example, might generate an overly complex controller or might make
the derivation of the controller impossible. On the other hand, an over-simplified or linear model
facilitates the derivation of the controller but might generate a controller unable to achieve the
desired control objective. A reasonable compromise is a reduced model able to capture the dynamic
features of the flow that one wants to control. See Cao and Aubry 1993, Rajaee ef al. 1994,
Cortelezzi et al. 1994. Typically, the reduced model is a low-dimensional system governed by a set of
ordinary differential equations, while the real flow has infinite dimensions. An advantage of working
with a reduced model is that one can use dynamical system analysis to investigate the problem.
Analysis of the phase space of the reduced sysfem should provide information about fixed points,
limit cycles, bifurcation points, etc., characteristic of the flow under consideration and consequently
should provide information about effectiveness and robustness of the controller. Another advantage
of model reduction is the potential for producing fast numerical algorithms which are essential for
controlling a real flow.

Before attempting to control a laboratory flow one should take the intermediate step of controlling

the same class of flows simulated by a more sophisticated CFD (Computational Fluid Dynamics)




code. The application of the controller derived for the reduced model to a complex model should be
successful if the two models are dynamically equivalent; i.e., if the phase spaces of the two models
are topologically equivalent. The equivalence of the two models can be investigated via dynamical
system and time series analysis. There are many advantages in controlling a flow simulated by
another CFD code. All the flow quantities necessary to feedback to the controller can be easily
measured. The action of the controller is automatically synchronized with the evolution of the
flow because both algorithms run in virtual time. Furthermore, the controller can be tested on
gradually more complex flows. For example, if the controller were derived for an inviscid model,
then it could be applied to the same flow when the fluid is sliéhtly viscous. In general the controller
has to be made robust with respect to the perturbations introduced by the new environment, e.g.,
viscosity, three-dimensionality, background noise (see Doyle et al. 1992, Fan et al. 1991). Only
an iteration process might produce a controller able to handle the flow simulated by the Navier-
Stokes equations. Finally, the control of a laboratory flow can be attempted when the controller
generated by this chain of refinements is robust enough to perform in the presence of the unmodeled
and unpredictable uncertainties affecting the real system and is fast enough to control the flow in
real-time.

Recently, efforts to modify certain features of the wake behind bluff and slender bodies, such as
reduction or magnification of the wake thickness (Tokumaru & Dimotakis 1991), wake stabilization
(Roussopoulos 1993), vortex cancelation (Koochesfahani & Dimotakis 1988), pattern reproduction
(Ongoren & Rockwell 19884, b, Gopalkrishnan et al. 1994), and lift enhancement (Rossow 1977,
Slomski & Coleman 1993) have been successful. In all these investigations the free-stream velocity
was kept constant and quasi-steady results were achieved usually by moving the body or the actuator
with a frequency scaled by the shedding frequency. In a more general situation in which the free-
stream velocity is time dependent this approach is generally not sufficient to control the flow and a

nonlinear control strategy is necessary.




The present study investigates the active control of the wake past a plate perpendicular to an
unsteady fluid flow. In Section 2, following our previous work (see Cortelezzi 1995), we model
the unsteady separation from the tips of a flat plate by means of a pair of point vortices whose
time-dependent circulation is predicted by an unsteady Kutta condition. The problem is further
simplified by imposing wake symmetry. The motion of the vortex pair is determined by a non-
linear ordinary differential equation first proposed by Brown and Michael in 1954. A suitable vortex
shedding mechanism is also introduced to allow the simulation of flows involving multiple vortices.
This reduced model is able to capture the main features of the flow and, for example. is quite
accurate for power-law starting flows (see Cortelezzi 1995).

In Section 3, we consider as a control actuator a suction point placed on the downstream wall of
the plate. The control objective is to confine the wake to a single vortex pair of constant circulation.
We show that suction is a very efficient means to control the production of circulation. Thanks
to the simplicity of the model we obtain for any time-dependent free-stream velocity the analytical
closed-form solution of the controller; i.e., the predicted suction necessary to inhibit the production
of circulation when a vortex pair is present in the flow.

In Section 4, we perform a dynamical ‘system type of analysis to characterize the perfzrmance
of the controller. When the free-stream is constant, we show the>existence of fixed points for the
unperturbed system and compute the locus of the fixed points. There is a critical value for the
circulation associated with the vortex pair above which one can find two pairs of fixed points: a pair
of stable nodes and a pair of saddle points farther downstream. The circulation plays the role of a
bifurcation parameter and the vector field undergoes a saddle-node bifurcation when the circulation
is near its critical value. The analysis of the phase space shows the existence of a controllable region
between the plate and the stable manifolds of the saddle points. When the free-stream velocity
oscillates periodically about a unit mean, we compute the Poincaré section to characterized the

perturbed system. We show the topological equivalence between the Poincaré section and the phase




space of the unperturbed system. The stable node of the Poincaré section represents a limit cycle
while the saddle point represents an unsteady periodic orbit.

In Section 5, we present the results of three simulations. The first two simulations document the
ability of the controller to drive the vortex pair to the stable nodes when the free-stream velocity is
constant or to a limit cycle when the free-stream velocity oscillates periodically. The third simulation
documents the performance of the controller when the free-stream velocity performs pseudo-random

oscillations.

2 Mathematical formulation

In this section we introduce a mathematical model of the two-dimensional unsteady separation from
the tips of a finite plate with a suction point of strength s at the center of the downstream wall. Let
us assume that the regions of vorticity that separate from the boundary layer and are convected away
are thin enough to justify a description by means of a vortex sheet. The consequent stretching and
rolling up of the vortex sheet, due to the unsteadiness of the flow, suggests a more coarse description
via point vortices. The vortex sheet is not completely lost. It is assumed of negligible circulation
that connects the feeding point to a point vortex of variable strength which is able to satisfy an
unsteady Kutta condition. Mathematically the feeding vortex sheet is just the branch cut due to the
logarithmic singularity representing the vortex. All the other vortices in the wake are represented
by point vortices of fixed circulation.

- We choose, for simplicity, a frame of reference fixed to the plate so that the body can be identified
with the segment [—2ia,2ia] and the suction point s coincides with the point (0%,0). Then, the
flow of an incompressible irrotational fluid about such a body can be solved via conformal mapping.
Using the Joukowski transformation:

a2

z:(—z-, (1)




we map a finite plate of length L = 4a in the z-plane onto the circle of radius a in the {-plane (see
Figure 1) preserving the characteristic of the flow at infinity.
To make the problem dimensionless we have to define a characteristic length and time scale. For

this purpose we write the free-stream velocity as follows:
U(t) = Uso +u(t), )

where Uy is the unperturbed free-stream velocity and u(t) is the time dependent component. If
we choose the circle radius as characteristic length and a/Uy as characteristic time of the problem

then we can define the following dimensionless quantities:
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where T' is the circulation. Note that ey = u/Uy contains the unsteadiness of the free-stream
velocity and it is not necessarily small with respect to unit. We now continue the mathematical
formulation of the problem using dimensionless variables, the stars will be dropped for convenience.
There is experimental evidence (Lisosky 1993, private communication) that the near wake is
nearly two dimensional and symmetric about the x-axis if the plate moves with a non-zero accelera-
tion. Under these circumstances the problem can be simplified imposing symmetry with respect to
the real axis, i.e., the vortices have equal and opposite circulation, I'y, and ~I',, and are located in
complex conjugate positions, {, and (,, respectively. Since the velocity field has to satisfy Laplace’s
equation and the boundary condition in the mapped plane can be treated using the circle theorem,
we can build the complex potential F' superimposing basic flows. Thus, the complex velocity field

w = dF/d{ has the form:
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Note that for convenience we are departing from the usual convention and taking the circulation
positive when in the clockwise sense. Note also that the singularity on the back face of the plate
behaves as a sink when s > 0 and as a source otherwise. We impose the Kutta condition to regularize
the potential flow at the tips of the plate. In the {-plane the flow is non-singular since the singularity
has been absorbed by the mapping. To remove the singularity in the z-plane the complex velocity
(4) in the mapped plane has to be zero at the top and bottom of the circle, i.e., at { = . Solving

for I'; we obtain:
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Note that the circulation associated with the vortex pair depends on all the flow quantities, i.e.,
free-stream velocity U, suction s, position and circulation of all the vortex pairs, and the position
of the vortex pair 1. The above expression suggests that the Kutta condition can be satisfied even
when there are no vortices in the flow. It suffice to choose s(t) = —2U(t), see Figure 2.

To describe the motion of the vortex pair in the physical plane we use the following set of ordinary

differential equations:

4
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with the initial conditions:

s) =21
) ™
2 (ts) = 2, r=2...N.

The term containing dT'; /dt is known as Brown and Michael’s correction (Brown and Michael 1954).
The motion of the vortex of variable strength described by this equation guarantees no net force on

the vortex and its connecting cut. The limit on the right hand side, which represents the complex




velocity at the vortex location without the self-induced contribution, produces the so called Routh’s

correction when it is evaluated in the mapped plane (e.g. Clements 1973).
We solve the problem in the mapped plane. Once we have performed the change of variables,

substituted for the complex potential, and carried out the limit required in the equation (6), we

obtain:
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with the initial conditions:

Gits) =1
G(ts) = ¢, r=2.N,

where I'; is given by (5). Note because of Brown and Michael’s correction the equations are coupled

)

not just through the position of the vortices but also through the velocity of the vortices.

The forces acting on the plate are of particular interest because they can be measured experi-
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mentally and are the crucial quantities in any problem involving the interaction between fluids and
structures. The forces can be computed by means of the Blasius theorem, see Cheers 1979, Graham

1980, and Cortelezzi 1995 for different derivations. The drag has the following form:

- - N s —
:iiLtI . i [I‘l(l *Cl(l_)((l - Cl)] + iPZ r _fi_ [(1 "Cn(n)((n Cn)] . (10)

ds
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n=2
The component of the force along the imaginary axis, i.e. the lift, is zero because of the imposed
symmetry. The first term on the right hand side is the force due to added mass, i.e., is the inertia
of the attached flow, the second term is the contribution due to suction and the last two terms are

the contribution due to the evolution of the wake. We define the drag coefficient as follow:

D
3pULL

Cp = (11)

Note that the drag coefficient is well defined only in the case where the free-stream velocity is
constant. To compute the drag coefficient in the unsteady cases that we will present in Section 5 we
choose for Uy, the asymptotic value or the mean value of the free-stream velocity.

The final element necessary for a correct implementation of this model is a vortex shedding
mechanism. If we envision the separation process by means of a vortex sheet then the instantaneous
circulation necessary to keep the flow regular at the tip of the plate is associated with an infinitesimal
segment of the sheet which is then shed in the fluid. The circulation is consequently distributed
along the singular line and the sheet rolls-up around the points of highest absolute circulation per
unit length and it stretches most where the circulation per unit length is lowest. As the process
continues, we observe that a large amount of circulation concentrates in the core of the spirals which
are connected with each other by filaments of almost negligible circulation. This process can be
reflected in our model by replacing each spiral with a point vortex of fixed circulation except for the
spiral connected to the separation point which is replaced by a point vortex with time-dependent

circulation. This latter vortex will continue to be fed circulation until the rate of change of circulation




becomes zero because we conjecture that this is the part of the sheet that will be stretched the most.

Let us consider the problem of shedding a new vortex when N — 1 other vortices are already
present in the flow. If ¢, is the shedding time then it is crucial to analyze the transition from t;
to ¢tf. Up to the time ¢, vortex 1 has variable strength such that the Kutta condition is satisfied.
At time ¢ = ¢, this vortex has its strength frozen and all the vortices renumbered. Finally at tta
new vortex 1 is introduced into the flow to remove the square root singularity. If we restrict our
simulation to the case where the shed vortices have alternate sign, then we can model the vortex

shedding making the assumption that the time ¢ = t, is determined by the condition:

— =0, (12)

1=t
assuming d21‘1/dt2|t=t‘ # 0. Any other choice for the shedding time implies the arbitrary production
of two sequential vortices of the same sign or the existence of a vortex which strength decreases in
time. The latter situation is physically unacceptable. This procedure has been proposed by Graham
(1980) to simulate the flow induced by an oscillating diamond shaped cylinder.

The quality of the simulation with many vortices depends in large part on the shedding mech-
anism. Let us assume that between two zero crossings dT'y/dt is positive and has two peaks, then
it 1s not clear whether one or two vortices should be shed during this period. It seems that the
deepness of the trough separating the peaks would be an important parameter. If it is very deep
it seems reasonable to have two vortices otherwise just one. Although the shedding mechanism can
be implemented for all cases, to avoid any ambiguity we restrict ourselves to cases where the rate of
circulation production has only one local maximum or minimum between consecutive zero crossings
or, equivalently, where d’T"; /dt? does not change sign between crossings.

Because of the size and complexity of the problem we are not attempting an analytical solution.

We solve the problem numerically taking advantage of our previous work (Cortelezzi 1995).

10




3 Active wake control

There are different approaches one can use to control the wake past plate by suction. One can try
to control the position of the vortices or some features of the velocity field. We choose to control
the amount of circulation injected in the flow because we believe that this is the most efficient way
to control the wake. To gain insight on the effectiveness of the suction as a mean to control the

circulation we compute the rate of circulation production by taking the time derivative of (5), we

have:
dFl g N 1rn (Cn - C_ﬂ)(l —Cnfn)
@ _ __ oy En i
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n=2
From the above expression we see that the rate of circulation production depends on all flow quan-
tities and their derivatives. Note that suction and rate of change of suction contribute to the
production of circulation in the same way as free-stream velocity and free-stream acceleration, re-
spectively. Hence, using suction as mean to control the rate of circulation production is as powerful
and robust as using the free-stream velocity.

Our control objective is to inhibit the rate of circulation production after the starting vortex pair
is shed in the flow. In other words, we want to predict the suction so that once the starting vortex
pair is shed in the flow the Kutta condition remains satisfied without requiring a new vortex pair.
The possibility to maintain the wake confined to a controlled recirculating bubble has important
implication to the problem of drag reduction in general, moreover, it can provide insight into vortex
management techniques for the three-dimensional flow over a delta wing, see Rao 1987. Note that

there is no conceptual difficulty in inhibiting the rate of circulation production when more than a

vortex pair in present in the wake, if that is required by the application under consideration.
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Let ¢, be the time when the starting vortex pair is shed in the flow, i.e. the time when the
rate of circulation production goes to zero. Then for 0 < t < t, the motion of the vortex pair of

time-dependent circulation is prescribed by the following equation:

[@f1+(ﬁf02 (1+¢)1-¢) _]gg_[@quﬁ (1-¢H+3f) _}g;:
¢t G A+HG-a)A-¢6)] dt G A+ ENG-G)A-GG)] dt
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(1"1’(? {Ul ¢t +27f 1-GG -G 1-¢2 +27"C1(1+C12) sCl(Cl—l)

(Gi+i)2 [.dU  ds .
(14)

with the initial condition:
¢1(0) =1 (13)

Note that suction appears in the above equation but in this study it is not used to control the
flow for t < t,. In general, suction can be used to drive the system to some desired state from which,

at ¢ = 1,, the controller that inhibits the production of circulation takes over.

When, instead, ¢ > ¢, the equation of motion for the vortex pair of constant circulation +T', is:

ﬁ:[ St¢i ’]UO‘i)ﬁnw G 1__<1J
dt |1+ (1+¢) & 2 [1-GG -G 1-¢
_*_1'& 1 _ G+l
r GA+¢) G-’

(16)

with the initial condition:
G(ts) =1G,. (17)

To close the problem we have to provide an equation for s which implements our control strategy.
An ordinary differential equation for s can be obtained from (13) simply setting dI';/dt = 0 and
IFn =0, forn=2,3,...,N. Nevertheless, a simpler result follows from the fact that the problem of
maintaining dI'; /dt =0Vt > ¢,, is equivalent to the problem of maintaining the Kutta condition

satisfied when a vortex pair of fixed circulation is present in the flow. Then the suction which
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implements our control strategy is simply derived by solving (5) for s when I';, =0, n =2,3,...,N.

We have:

(G -G)A-66)
T+ (9

A question arises about the compatibility of the equations (14) and (16). Compatibility is

s = -2U — milh,

required to guarantee a smooth transition, at time ¢ = {,, from the final state of equation (14) to
the initial state of equation (16). At time ¢ = ¢, the Brown and Michael correction vanishes and the

two equation coincide, consequently compatibility is assured.

4 Dynamical behavior of the controlled system

In the previous section we have been able to find a controller which inhibits the production of
circulation when a vortex pair is present in the flow. This section is devoted to the analysis of the
dynamical behavior of the controlled system.

As initial step we search for the fixed points of the unperturbed system. For convenience we

rewrite equation (16) in polar form, see Figure 1. We obtain:

4
spi(p} — 1)

p1+1—2p;siné,

oy _ P
dt ~ pi+1-2p2cos26,

[Upl(pf — 1)sinf; —

-+

T'1,p3[803 (s + 1 — 2p] sin ;) cos? 6, — (pf — 1)*]sin 6,
47{(p} + 1)? — 4p? cos? 26,] cos 6,

do, P

2sp? cos 6,
dt ~ pt+1—2p2cos 26,

p1+1—2p;siné,;

[U(p? + 1) cos by +

D D1 o411
\ (%~ DA 1 — aptcos?203]

(19)
where
Ty, 201(p? —1)cost,

=— - 2U.
T p} 41— 2p? cos 26, v (20)

With the term unperturbed system we intend the case where all the flow quantities are constant.

Note that in the above equations the free-stream velocity is indicated with U for clarity although it
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is simply unit. Consequently, the problem depend only on one the parameter: the circulavion of the
vortex, I'y,.

When suction is zero there does not exist any vortex pair which is stationary and satisfy the
Kutta condition beside the pathological situations where the vortex pair has infinite circulation and
is infinitely distant from the plate. This result predicts that for any free-stream velocity a flow
which separates from the tips of a flat plate cannot reach a steady-state solution. At the best of our
knowledge there is not any experimental evidence which contradicts this prediction. When, instead,
suction is non-zero there are fixed points and the locus of them is shown in Figure 4. Each point
on this curve represents the position of a vortex, whose circulation is shown in Figure 5(b), that is
stationary and satisfies the Kutta condition. The suction associated with each fixed point is shown
in Figure 5(a). The reader should be aware that because of symmetry we will restrict our discussion
to the upper half of the domain.

We conduct a linear stability analysis to investigate the nature of the fixed points. Figure 3 shows
real and imaginary parts of the eigenvalues A; and ),. Three distinct regions can be recognized.
Near the plate, where 0 < z < z, the eigenvalues A; and A, are complex conjugate with positive
real parts, see Figure 3. In this region the fixed points are unstable foci. Figure 5 shows that both,
circulation and suction, are negative. Physically it means that the Kutta condition is unusually
satisfied by a vortex generating a counterclockwise flow and by injecting fluid. In particular, when
z = 0, there are no vortices in the flow and the case shown in Figure 2 is recovered. In the middle
region, where z; < r < zo, the eigenvalues are purely real with \; < A2 < 0, see Figure 3. In this
region the fixed points are stable nodes. Circulation and suction are both positive as expected, see
Figure 5. Note that the values of circulation and of suction at z = z, are the minimum values
necessary to have a stable fixed point, I'. ~ 18.49 and s, ~ 0.67 respectively. Note also that the
asymptote at z = z, separates two regions of totally different dyﬁamics and no smooth transition is

possible between the two regions as both, circulation and suction, are discontinuous passing through
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z;. In the third region, where z > z,, the eigenva.llies are purely real with A; < 0 < Ay, see Figure 3.
In this region the fixed points are saddle points. As before, circulation and suction are both positive,
see Figure 5. The circulation increases from I, to infinite while the suction decreases monotonically
to zero as z goes from z; to infinite. Note that at z = z, the eigenvalue A, becomes zero providing
a necessary but not sufficient condition for the bifurcation of a fixed point.

We restrict our discussion to the sub-domain where z > z;, Iy, > 0, and s > 0. It is important
to observe that in this sub-domain there are fixed points only when I';, > I'.. As suggested by
the behavior of the eigenvalue Ay the vector field undergoes to a saddle-node bifurcation at z = z,
when T'y, = TI'.. The circulation of the vortex, I';,, plays hence the role of bifurcation parameter.
Technically, the bifurcation should be analyzed using the center manifold theorem (see Guckenheimer
and Holmes, Chp.4), but to maintain the paper focused on fluid-mechanics we will skip this formal
step. To document the effect of the bifurcation parameter and to give a complete characterization
of the dynamics of the system we plot the sub-space of the phase space which coincides with the
Iﬁlysical domain. In this plane the lines of flow of the vector field coincide with the trajectories of
the vortex. The reader should be aware that these trajectories are obtained for constant free-stream
velocity and circulation while suction in general changes along each trajectory. When Iy, < T, there
are no fixed points. There are only two families of trajectories separated by the center manifold,
see Figure 6(a). When a vortex starts above the center manifold it drifts irreversibly downstream.
When, instead, the vortex starts below the center manifold it can, depending on its initial position,
approach temporarily the plate, but eventually drifts downstream. When Iy, = I there is a non-
hyperbolic fixed point and the flow pattern of the center manifold can be easily recognized, see
Figure 6(b). Finally, when I';, > I'. there are two hyperbolic fixed points: a stable node and a
saddle point, see Figure 6(c). The vortex trajectory is characterized by the initial position of the
vortex with respect to the stable manifold of the saddle point. If the vortex is initially on the left of

the stable manifold then is driven by the controller to the stable node. It is interesting to observe
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that the trajectories between the stable manifold and the z-axis extend infinitely downstream. When
the vortex and its image are initially in the narrow region delimited by the stable manifold and the
image manifold, they propel themselves upstream and, with the help of suction, first approach the
plate and then are driven to the stable node and its image. When, instead, the vortex is initially on
the right of the stable manifold it drifts downstream even if temporarily approaches the plate. We
define as controllability region the basin of attraction of the stable node, i.e., the region delimited
by the coordinate axes and the stable manifold of the saddle point. Note that as I';, increases the
distance between stable node and saddle point increases as well, with a consequent widening of the
controllability region.

Since our final goal is to control the wake past the plate in the presence of an unsteady free-
stream condition, it is crucial to investigate how the phase space modifies under a time-dependent
perturbation. The answer to this question is given by a theorem (see Guckenheimer and Holmes,
Chp. 4) which guarantees that the Poincaré section of a periodically perturbed system is topologi-
cally equivalent, for sufficiently small perturbations, to the phase space of the unperturbed system
provided that the fixed points are hyperbolic. We perturb our system with a free-stream velocity of
the form U(t) = 1 + esin(wt) and compute the Poincaré section by plotting the vortex position at

= 2n7/w for n = 0,1,2,.... The resulting Poincaré section presents two hyperbolic fixed points:
a stable node and a saddle point, see Figure 6(d). The stable node represents a limit cycle and the
séddle point an unstable periodic orbit. As we should show in the next section, see Figure 13, the
vortex is driven to a periodic orbit if it is initially on the left of the stable manifold of the Poincaré
section. The topological equivalence between the phase space and the Poincaré section becomes
evident comparing Figures 6(c) and 6(d). Because of this equivalence we can extend the definition
of controllability region to the perturbed system. The controllability region coincides with the basin
of attraction of the stable node of the Poincaré section.

In conclusion, suction is a robust mean to control the wake past a plate both in perturbed and
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unperturbed conditions provided that the vortex is initially within the controllability region. In the
unperturbed case the vortex is driven to the stable node while in the periodically perturbed case is

driven on a periodic orbit.

5 Results

In this section we present the results of three simulations. The first two simulations document
the ability of the controller of driving the vortex to the stable node when the free-stream velocity is
constant or to a limit cycle when the free-stream velocity oscillates periodically. The third simulation
documents the performance of the controller when the free-stream velocity performs pseudo-random
oscillations.

In the first simulation the free-stream velocity increases from rest, reaches a maximum value,
and decreases to a unit value at ¢ = 1, see Figure 7. We carefully choose the initial evolution of the
free-stream velocity so that, in all three simulations, a vortex pair of nearly the same circulation
Iy, > T is shed in the flow at nearly the same time. For simplicity suction is used to control
the wake only after the rate of circulation production is gone to zero, see Figures 7 and 9. Three
distinct intervals of time can be recognized. Initially, when 0 < t < ts, the flow is uncontrolled
and separates from the tips of the plate creating a vortex pair which drifts downstream, Figure
8 shows the trajectory of the top vortex. The the rate of circulation production associated with
the top vortex increases initially, decreases during the deceleration, and eventually become zero at
t =1, &~ 0.71 triggering the controller, see Figure 9. At the same time the circulation of the top
vortex reaches its maximum and final value, see Figure 9. The drag is dominated by the effect of
the added mass because of the strong accelerations of the flow, see Figure 10. In the second interval,
t, <t <1, the controller predicts the suction necessary to maintain the wake to a single vortex pair
of constant circulation, I'y, = +20.01, see Figures 7 and 9. The flow is still decelerating and the

suction increases rapidly driving the vortices away from their drifting trajectories and toward the .
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z-axis, see Figures 7 and 8. The drag increases suddenly because of the effect of suction, but quickly
decreases and becomes negative as the effect of the added mass returns to dominate, see Figure
10. Finally, when t > 1, free-stream velocity and circulation are constants and suction drives the
vortex pair to the stable node. Note that the vortex pair moves on the trajectory predicted by the
analysis in Section 4, see for a comparison Figures 6(c) and 8. The drag increases from its minimum
value and eventually reaches a zero value as the added mass effect subdues, see Figure 10. Figures
11(a)-(f) show the instantaneous streamlines during the capturing process, because of symmetry we
plot only the top half of the domain. Figure 11(a) and (b) show the flow at time ¢ < t,, where
two recirculating bubbles grow and merge together. As suction becomes non-zero the recirculating
bubble is newly splitted in two bubbles, see Figure 11(c). Figures 11(c)-(f) show how the vortex is
driven to the fixed point. Figures 11(e)-(f) are nearly identical because the flow has almost reached
its steady state.

In the.second simulation the free-stream velocity increases from rest and reaches a maximum
value, as in the first simulation, but then oscillates about unit mean value, see Figure 12. Note that
the amplitude of the oscillations is such that the flow reverses its direction for nearly one third of
the period of oscillation creating one of the worse possible scenario for the controller. Three distinct
intervals of time can be recognized. Initially, when 0 < t < ¢,, the flow behaves qualitatively as in the
first simulation, see Figures 12-15. The rate of circulation production becomes zero at t = ¢, = 0.70.
In the second interval, {, < t < 2, the controller predicts the suction necessary to maintain the wake
to a single vortex pair of constant circulation, I'y, & +20.15, see Figures 7 and 9. Suction increases
at first, then after a fluctuation it reaches its maximum absolute value, and finally suction decreases
sharply. As a result the vortices are driven away from their drifting trajectories, at first toward the
origin and then toward the tip of the plate. At the end of the first period the vortices are positioned
near to the limit cycle trajectories, see Figure 13. The drag increases suddenly because of the effect

of suction, then decreases because of the added mass effect, and finally presents a sharp peak because
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of the combined effects of flow acceleration and suction fluctuation, see Figure 15. Finally, when
t > 2, all the flow quantities reach rapidly their final periodic behavior while the circulation of the
vortex pair is maintained constant, see Figures 12-15. The vortices are rapidly driven on the limit
cycle trajectories where they orbit for the rest of the simulation, see Figure 13. Figures 16(a)-(1)
show the instantaneous streamlines during one period of oscillation, 6 < ¢ < 8, as the vortices move
clockwise on the limit cycle trajectories.

In the final simulation the free-stream velocity increases from rest and reaches a maximum value,
as in the previous simulations, but then performs pseudo-random oscillations about unit mean value,
see Figure 17. Initially, when 0 < ¢ < t,, the flow behaves qualitatively as in the previous simulations,
see Figures 17-20. At time ¢t = ¢, &~ 0.70 the rate of circulation production goes to zero triggering
the controller which maintains the wake, for the rest of the simulation to a single vortex pair of
constant circulation, Ty, ~ £20.15, see Figures 17 and 19. Because of the pseudo-random character
of the the free-stream velocity it is difficult to give an interpretation to the time evolution of suction
in term of the evolution of the flow. We can only say that suction is able to maintain the vortices
closed to the plate orbitating on rather complex trajectories. Note that the trajectories somehow
entangles around the position of the stable nodes of the unperturbed system, see Figures 6(c) and

18.

6 Conclusions

A point vortexvmodel has been used to simulate the unsteady separated flow past a flat plate with
a suction point on the downstream wall. For this model we derived a control strategy that confines
the wake to a single vortex pair of constant circulation. Because of the simplicity of the model we
obtained the analytical closed-form solution of the nonlinear controller for any free-stream velocity.
The performance of the controller was characterized by a dynamical system type of analysis. In

the case of steady flow we computed the locus of the fixed points of the unperturbed system. We -
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showed that a pair of stable nodes and a pair of saddle points exist only if the circulation associated
with the vortex pair is above a critical value. We also showed that the vector field presents a
saddle-node bifurcation and that the circulation is the bifurcation parameter. We identified the
controllable region of the unperturbed system with the basins of attraction of the nodes. In the case
of unsteady flow we computed the Poincaré section of the perturbed system. We presented evidence
of the topological equivalence between phase space of the unperturbed system and Poincaré section.
We showed that under perturbation the stable nodes of the unperturbed system become periodic
orbits. We identified the controllable region of the perturbed system as the basin of attraction
of the nodes of the Poincaré section. The predictions of our analysis were verified by testing the
controller with three different unsteady free-stream conditions. The first simulation documented
the ability of the controller of driving the vortex pair to the stable nodes when the free-stream is
asymptotically constant. The second simulation documented the ability of the controller of driving
the vortex pair to the periodic orbits when the free-stream velocity oscillates periodically about a
unit mean. Finally, the third simulation showed the successful performance of the controller when
the free-stream velocity performs pseudo-random oscillations about a unit mean.

The present study showed that the use of a reduced model provides a favorable environment to
derive the desired control strategy and to test its performance and robustness. The natural continua-
tion of the present work would be embedding the derived controller into a more complex and realistic
model, for example, the Navier-Stokes equations. The embedding process should be supported by
a dynamical system and time series analysis to demonstrate the dynamical equivalence of the two
models. Testing the controller in a different numerical environment instead of in an experiment
presents several advantages. All the flow quantities necessary to feedback to the controller can be
easily measured. The action of the controller is automatically synchronized with the evolution of
the flow. Finally, the controller can be easily tested on gradually more complex flows allowing the

researcher to make the controller progressively robust with respect to different types of perturba-
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tions (e.g. viscosity, three-dimensionality, back-ground noise, etc.). Successful completition of this

process would open the possibilities for the active control of large-scale coherent vortical structures

in engineering applications.

7 Acknowledgments

The author wishes to thank Dr. F.E. Marble for suggesting the use of a suction point as a means to
control the flow. The author also wishes to thank Dr. R. Camassa and Dr. J.S. Gibson for several

valuable discussions. This work was supported by the Air Force Office for Scientific Research Grant

# F49620-92-J-0279.

21




Figures

22




U@)

z-plane \.)
r

6 /\vr
U(t) p
e \
NV
a i
plane

Figure 1: Physical and mapped planes for the flow past a flat plate.

23




4.9

stream!ines

1.0820

T

TrTeT

P vivtvir: APV

1

1

1.4

1.8

2.2

2.6

Figure 2: Instantaneous streamlines, s = —2U

24




(2)

20 i T :l T T T T T
i 15+ Real part .
| : : - - - — Imaginary part

10t/ : 4

L
T
1

Eigenvalue 1
(=]

-5 -
-10 ]
-15 4
2% 4

20 ; Ls :l L] 1 L§ 1 1
1sp K Real part ]
“ ,‘g : - - - - Imaginary part
10y’ : 4
[ I o 1
o

=

<

2 Of Foo et

5] :

20 :

B st -
-10} R
-15} _

20 Xl: 1 ngl 4 1 1 1 1
) 0.5 1 15 2 2.5 3 3.5 4
X
Figure 3: Real and imaginary parts of the eigenvalues A; (a) and X, (b).




Stable Unstable

_ Unstable

05§

Figure 4: Locus of the fixed points.

26




Q N
S Suble Unstable
£ :

30

20

10

Stable Unstable

Unstable

Figure 5: Suction (a) and circulation of the top vortex (b).

27




Figure 6: Vortex trajectories, U = 1: T}, = 15 (a), T'y, = 18.49(b).
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Figure 12: Free-stream velocity and suction.
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Abstract

An adaptive controller is used to reduce the oscil-
lation of the cross-stream velocity at a point on the
center line of an oscillating wake behind two vortex
sources. The flow field is simulated by a new finite
vortex street model, which uses discrete vortex blobs
to model the vortex dynamics of the fluid flow.

1 Introduction

Discrete vortex models have been used to simulate
many fluid-flow phenomena, including flow past bluff
bodies and vortex sound generation [6, 2, 4, 1]. In
this paper, a two-source vortex street model (3] is
used to simulate an oscillating wake typical of many
fiows.

An adaptive LQG controller is used to reduce the
oscillation of the cross-stream velocity measured at
a point on the center line of the flow field. The
controller is based on a linear digital input/output
model of the flow, even though the vortex simula-
tion is highly nonlinear. The control philosophy is to
allow the parameters in the linear control model to
vary adaptively to identify a local linearization of the
true nonlinear input/output model. The adaptive
controller uses a new adaptive QR algorithm for nu-
merically stable and efficient parameter estimation.

2 Vortex Model
Suppose that there are N vortices located at
(zi,9:) for i = 1,---,N. The dynamical equations
of the vortex model are

dz;
7’;— = Ui(t) = Up(zi, v:) (1)
1 & Ti(y — )
+27r1'=lz,j:¢.' ((zi — ) + (v — 4)?)"
dy;
T‘Z = V,(t) = I/;,(z,-,y.-) (2)
L ad Lj(zi — z;)
2 e (@i = 2 + (v = y)?)
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where T is vorticity strength of the i** vortex and
Up(zi,¥i) and Vp(zi,4:) are the velocities from po-
tential flow. The part of the velocity field due to
potential flow is taken to be U, = 1.0 and Vp=0to
represent a constant, uniform free-stream velocity.
New vortices are generated in pairs from two vortex
sources at (0.0,+0.5) with opposite vorticity +T;.
The series of vortices generated form the wake-like
vortex street and roll up down stream of the vortex
sources. To maintain a fixed number of vortices af-
ter a short start-up period, each vortex strength T;
fades to zero after N time steps [3, 5). The vortex
roll-up formed with N = 150 and I' i equal to the
same constant I for all vorticies (before fading) is
shown in Figure 1.

For the control problem, the measured and con-
trolled output is the vertical velocity V; at the fixed
point (0.0,0.0) (i.e., the midpoint between the two
vortex sources). This velocity component is given by

N

1 (2o - z)
Yo(t) = ug{ (@ -zl +w-57)

The control action is the variation T’y of the strength
of the newly generated vortices. Thus, at the time
step when a pair of vortices is introduced at the sor-
ces, the strengths of the two new vortices, respec-
tively,

Fnew =4I+ T, (4)

where I' is a constant nominal strength.

3 Adaptive Controller

Rather than base the controller design on the large
number (300 in the example here) of coupled nonlin-
ear differential equations governing the vortex dy-
namics, the approach presented here uses a linear
input-output model with time-varying coefficients as
the basis of the control design. This ARX model is

N N . .
y(t) = — Za,-(t)y(t —i)+ Y bi(t)u(t - j). (5)

j=1




where the output y(t) is the vertical velocity Vo(t),
the control u(t) is the perturbation T, in the strenth
of the two vortices introduced at time ¢, and a;(t)
and b;(t) are the time-varying coefficients. These
coefficients are estimated adaptively by an adaptive
QR algorithm, and the parameter estimat s at each
time ¢ are used to update the gains in an adaptive
LQG controller.

4 Simulation Results

When the system is initialized with a single vortex,
the cross-stream velocity at the point half way be-
tween the two vortex sources approaches the steady-
state oscillation shown in Figure 2. The controlled
output is shown in Figure 3. Before the feedback
control loop is closed at time step 420, a known ran-
dom input sequence u of small amplitude forces the
system to provide input-output data for initial pa-
rameter estimation. The feedback controller reduces
the output amplitude to about 10% of the open-loop
amplitude.

It is common for nonlinear systems to have dif-
ferent frequencies of oscillation for different ampli-
tudes. For the system studied here, the amplitude of
the output signal is reduced by the controller, and
the closed-loop response has frequencies that were
not significant in the open-loop response. Thus, the
parameters in the controller must be reidentified af-
ter the control loop is closed. The results here in-
dicate that. by changing the parameters adaptively,
the controller can maintain a significant reduction in
output amplitude.
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Abstract

This paper studies the zeros of input/output models
used in controlling the oscillating wake behind two
vortex sources. The numerical results presented show
that the stability of the zeros of adaptively identified
input/output models depends on whether the sensors
are upstream or downstream of the actuator.

1. Introduction

Discrete vortex models have been used to simulate
many fluid-flow phenomena, including flow past bluff
bodies and vortex sound generation [1, 5]. In this
paper, a two-source vortex street model is used to
simulate an oscillating wake typical of many flows [4].

In (2, 3], an adaptive LQG controller is used to reduce
the oscillation of the cross-stream velocity measured
at a point on the center line of the flow field. The
controller is based on a linear digital input/output
model of the flow, even though the vortex simula-
tion is highly nonlinear. The control philosophy is
to allow the parameters in the linear control model
to vary adaptively to identify a local linearization of
the true nonlinear input/output model. The adaptive
controller uses an adaptive QR algorithm for numer-
ically stable and efficient parameter estimation.

The LQG controller used in [2, 3] works well as long as
the position at which the cross-stream velocity is mea-
sured and controlled is not downstream of the actua-
tor. Whenever the measurement point is downstream
of the actuator, the feedback control command goes
unstable. This suggests two possibilities: either the
adaptively varying linear input/output model used
for the controller does not approximate the dynamics
of the flow sufficiently when the sensor is downstream
of the actuator, or the actual nonlinear vortex model
possesses unstable zero dynamics when the sensor is
downstream of the actuator.

1This research was supported by AFOSR Grant F49620-92-
J-0279.
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We have investigated the zero dynamics of the vortex
mode! in two ways. First, we used an adaptive QR al-
gorithm to identify linear input/output (ARX) mod-
els of various orders from input/output data, as in
[2, 8]. Second, we implemented a nonlinear one-step-
ahead contoller based on the explicit vortex mod-
el (i.e., the nonlinear simulation simulation model).
We considered both the single-input/single-output
case and the single-input/two-output case where t-
WO senscrs measure cross-stream velocities at differ-
ent points on the center line of the flow field.

The adaptively identified ARX models consistently
exhibit stable zeros when the sensors are upstream
of the actuator but unstable zeros when the sensors
are downstream of the actuator. In simulations, the
nonlinear controller—applied to the exact simulation
model for which it was designed-—drives the output
close to zero with a bounded control signal when the
sensors are upstream of the actuator, but the con-
trol signal generated by the nonlinear one-step-ahead
contoller goes unstable whenever sensors are down-
stream of the actuator. The performance of the non-
linear controller, which is based on the explicit vortex
dynamics, indicates that, indeed, the stability of the
zero dyanics of the nonlinear flow depends on whether
the sensors are upstream or downstream of the actua-
tor, and the adaptively identified input/output mod-
els correctly capture this property, which is important
for feedback control.

2. Vortex Model

Suppose that there are N, vortices, with the k' vor-
tex located at the point 2 (K = 1,--., N,) in the
complex plane. The equations of motion for the vor-
tex model are

dz; - 1 Fj
o =0t g D Co )

T~ Ip
J=1,j#k




&

where T’y is circulation of the k'* vortex and U, (z)
1s the complex velocity from potential flow. The part
of the velocity field due to potential flow is taken to
be U, = 1.0 to represent a constant, uniform free-
stream velocity. New vortices are generated in pairs
from two vortex sources at (0.0,+0.5) with opposite
vorticity &I'y. The series of vortices generated form
a wake-like vortex street and roll up down stream of
the vortex sources.

For the control problem, each measured and con-
trolled output is the vertical velocity at a fixed point
(x,0.0) (i-e., a point located a distance z along the
horizontal center line between the two vortex sources)
Upstream means £ < 0; downstream means z > 0.
The control action is the variation I'y of the circula-
tion of the newly generated vortices. At the time step
when a pair of vortices is introduced at the sorces, the
circulations of the two new vortices, respectively,

Fpew = 4T + T, (2)

where T is a constant nominal circulation. Hence, the
control actuator is located at =z = 0.

3. The Adaptively Identified Input/Output
Model and Its Zeros

The input/output model has the form

N N
u(t) == DAyt =)+ Bi(Wu(t ~5) (3)
=1 ji=1
where y(t) is the vector of measured vertical veloci-
ties, the scalar control is u = I'y. For the results pre-
sented in this paper, vertical velocities at two points
are measured, so each A;(t) is a 2 x 2 coefficient ma-
trix, and each B;(t) is a 2 x 1 vector. The system
is forced with a known random input sequence u of
small amplitude to generate input/output data for
identification.

For one-step-ahead control and most other adaptive
controllers, the relevant zeros are the roots to

N
BI(t))_Bj(t):' =0. (4)
j=1
The magnitudes of these zeros are plotted in Figures
1 and 2 for model order N = 4. We used two sets
of locations for the two velocity sensors. The first
set of sensor locations is £ = —1,—.5 (both sensors
upstream of the actuator). The second set of sensor
locations is £ = +.5,+1 (both sensors downstream of
the actuator). The figures show that the identified
zeros are all stable (magnitudes < 1) for the first set
of sensor locations, but that one zero is unstable for
the second set of sensor locations.
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Figure 1: Identified Zeros for N = 4, Both Sensors Up-
stream
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